BBA 41783

Reactivation of oxygen evolution of NaCl-washed Photosystem-II particles by Ca²⁺ and / or the 24 kDa protein

Alain Boussac, Brigitta Maison-Peteri, Anne-Lise Etienne and Claudie Vernotte

Laboratoire de Photosynthèse, CNRS, Boîte Postale No. 1, 91190 Gif-sur-Yvette (France)

(Received December 14th, 1984)

Key words: Oxygen evolution; Photosystem II; S state; Ca²⁺ effect; NaCl effect; (Spinach, Pea chloroplast)

We have studied the conditions required to reactivate oxygen evolution in NaCl-washed Photosystem-II particles. Restoration of oxygen evolution by Ca^{2+} revealed an heterogeneity in these Photosystem-II particles: 30% possess a low affinity site for Ca^{2+} (1–2 mM), 70% a high affinity site for Ca^{2+} (50–100 μ M), even in the absence of the 24 kDa protein. The sole effect of the 24 kDa protein added back to Photosystem-II particles shortly before illumination was to stabilize oxygen evolution. Added back more than half an hour before, to Photosystem II particles at a high chlorophyll concentration, it increased oxygen evolution from approx. 40% of the control to 60–70% of the control. After reconstitution, an appreciable fraction of the low-affinity site for Ca^{2+} was still present.

Introduction

Knowledge of the mechanisms of photosynthetic oxygen evolution has considerably increased with the use of Photosystem-II enriched particles isolated from green plants. Three polypeptides of 33. 24 and 17 kDa located at the inner surface of the membrane were shown to be involved in oxygen evolution [1,2]. The 33 kDa protein maintains the four Mn atoms at their binding site [3] which may be a membranous 34 kDa protein [4,5]. Removal of the 33 kDa protein together with the 24 and 17 kDa proteins by treatments with CaCl₂ 1 M [6] or urea 2.6 M [3], requires 200 mM Cl⁻ in the medium to keep the Mn at its active site [7]. NaCl-washing removes only the 24 and 17 kDa proteins [8]. These treatments produce partially or completely inactivated PS II particles that can be more or less reactivated by Ca²⁺ [6,7,9]. A possible role for the

Abbreviations: PS, Photosystem; Mes, 4-morpholineethane-sulphonic acid; EGTA, ethylene glycol bis(β -aminoethyl ether)-N, N'-tetraacetic acid.

17 kDa protein is to concentrate Cl⁻ around the oxygen-evolving complex [10], a similar role for the 24 kDa protein has also been suggested [11].

Oxygen evolution of NaCl-washed PS II particles was not totally inhibited. Larsson et al. [12] suggested that it was due only to the partial removal of the 24 kDa protein rather than to a partial inhibition of all the PS-II centers. Thus the effect of NaCl washing on the functioning of the donor side of PS II has been reinvestigated in this work by studying the oxygen evolved during a train of flashes.

The 24 kDa protein also creates a high-affinity site for Ca²⁺ [13]. In its absence the Ca²⁺ concentration required to restore oxygen evolution is higher than in its presence. Others [14–16] have shown that with the readdition of the 24 kDa protein alone, reactivation of oxygen evolution occurs in NaCl-washed PS-II particles. However, discrepancies between authors still exist about the usefulness of having either the 24 kDa protein, or Ca²⁺ or both present for full reactivation of oxygen evolution. In the present report we carefully rein-

vestigated the conditions under which reactivation can be obtained by adding Ca²⁺ and/or the 24 kDa protein to NaCl-washed PS-II particles.

Materials and Methods

Berthold, Babcock and Yocum -type [17] Photosystem-II particles from pea chloroplasts were prepared as in Ref. 18. The average activity was 250–300 μ mol O₂/mg total chlorophyll per h. NaCl washing was performed in room light as in Ref. 14. The PS-II particles were suspended in 0.3 M sucrose/10 mM NaCl/25 mM Mes (pH 6.5) at a concentration of 2–4 mg of chlorophyll/ml after their preparation. The residual activity of NaCl-treated PS-II particles varied from 10% to 40% of the total restorable activity, which corresponded to 70–80% of the activity of the intact PS-II particles. The variations in residual activity were independent of the NaCl concentration (1 or 2 M) used for the washing.

The initial rate of oxygen evolution under continuous illumination was measured with a Clark-type electrode with a response time of 1–2 s, at 20° C. The chlorophyll concentration for the experiments was $20~\mu \text{g/ml}$. The resuspension medium in the electrode chamber was 10~mM NaCl/ $10~\mu$ M EGTA/25 mM Mes (pH 6.5). Phenyl-p-benzoquinone at 0.45 mM was used as an electron acceptor.

The 24 kDa protein was purified as in Refs. 14 and 18. It was added back to the particles at a ratio of 0.2 mg protein/mg chlorophyll. For the short incubation time, the chlorophyll concentration was $20 \mu g/ml$; for the long incubation time, the chlorophyll concentration was 1 mg/ml.

Measurements of the oxygen evolved per flash were performed with a set-up described in Ref. 19. The flow medium was 0.3 M sorbitol/25 mM Mes 100 mM KCl (pH 6.5). For this latter experiment particles prepared according to Kuwabara and Murata [20] were used.

Results

The oxygen evolved per flash during a train of flashes (oxygen sequence) has a characteristic period 4 oscillation. Mathematical analysis of the sequences [21] allows us to determine the miss

parameter $\sum_{i=0}^{3} \alpha$ and the dark distribution of the S_0 and S_1 states (see Ref. 22 for a review).

Fig. 1 shows a typical trace obtained with NaCl-washed PS-II particles for the residual oxygen evolution. The values of the miss parameter and the S₀, S₁ dark distribution are shown in the inset, and are very similar to those obtained with intact PS-II particles [23]. This indicates that the donor side of NaCl-washed particles which were still functional was not affected by the treatment. Nevertheless, in the absence of Ca²⁺ in the flow medium, the stability of oxygen evolution of such particles on a bare platinum electrode was dependent on illumination. In the dark the particles were very stable on the electrode, yet illumination by either a sequence of flashes or even a single flash produced an irreversible inhibition of the subsequent sequence (measured 10 min later) (not shown).

The activity of NaCl-treated PS-II particles can be restored by addition of Ca²⁺ [9] and/or the 24 kDa protein [14]. As we pointed out in the introduction, data about this subject are somewhat contradictory. Sucrose, which was present in most experiments, is contaminated by Ca²⁺ (25 μ M Ca²⁺ for 0.3 M sucrose purchased from Merck). We therefore repeated the study of the reactivation of oxygen evolution for the NaCl-washed PS-II particles in a sucrose free medium. Moreover to complex traces of Ca²⁺ 10 μ M EGTA was added.

Curve
in Fig. 2 shows the restoration of

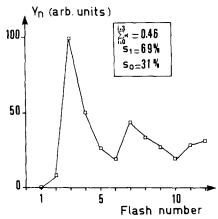


Fig. 1. Oxygen yield as a function of flash number (Y_n) for NaCl-washed PS-II particles. Flash spacing was 0.5 s. Dark adaptation 10 min on the electrode before the measurement. Chlorophyll total was 1 mg/ml.

oxygen evolution under continuous illumination by Ca^{2+} ($CaCl_2$) in NaCl-treated PS-II particles. It was possible to distinguish two ranges of Ca^{2+} concentration necessary for restoration of activity in particles which have a residual activity of 10%. The first range (50–100 μ M Ca^{2+}) concerns 70% of the total restorable activity, the second (1–2 mM of Ca^{2+}), 30%. The same curve was obtained with 30 mM Cl^- present in the buffer (not shown). Thus inhibition of oxygen evolution was not due to a too low Cl^- concentration in the absence of the 24 kDa protein as in Refs. 11 and 24.

Fig. 3 shows that the half-saturation with respect to light intensity was identical for 0.4 mM Ca^{2+} or 10 mM Ca^{2+} added. The effect of the 24 kDa protein upon Ca^{2+} reactivation depends on the conditions of incubation with the NaCl-washed particles. If the 24 kDa protein is added back 1 min before the measurement with a chlorophyll concentration of 20 μ g/ml, no stimulation was observed (curve \blacksquare in Fig. 2). Under these conditions the sole effect of this protein is to stabilize

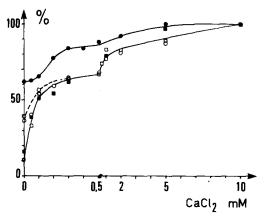


Fig. 2. Plot of the oxygen-evolution activity (in percent of the total restorable activity with 10 mM CaCl₂) versus CaCl₂ added for two samples. (a) First sample: NaCl-washed PS-II particles with (■) or without (□) the 24 kDa protein added in the medium 1 min before illumination at a protein-to-chlorophyll ratio of 1:5 (w/w) and a chlorophyll concentration of 20 μg/ml. (b) Second sample: ○, NaCl-washed PS-II particles without the 24 kDa protein; •, the 24 kDa protein was incubated with the particles (1 mg/ml of chlorophyll) in the dark, on ice, for half an hour. The protein to chlorophyll ratio was 1:5 (w/w). The difference between the first and second sample was the residual oxygen evolution activity after NaCl washing. First sample, 10%; second sample, 35%.

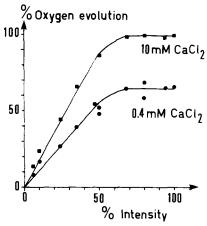


Fig. 3. Plot of the oxygen-evolution activity vs. light intensity in the NaCl-washed PS-II particles reactivated with 0.4 mM (•) or 10 mM (•) CaCl₂.

oxygen evolution (not shown) as observed in Ref. 24. Dekker et al. [25] suggest that this is because the protein prevents Ca²⁺ release from its site during illumination. Indeed, it seems that a single flash is sufficient to inhibit oxygen evolution in the absence of the 24 kDa protein. Therefore, when Photosystem-II centers are in the S₂ state, Ca²⁺ can be released from its binding site.

With treated PS-II particles having 40% of residual activity the curve (○) in Fig. 2 also showed two ranges of reactivation with the same two Ca²⁺ concentrations as above. The increase in residual activity from 10% to 40% seems predominantly associated with the suppression of a portion of the curve corresponding to the high affinity site for Ca²⁺. The percent of activity restorable by 1–2 mM of Ca²⁺ was not modified. The high affinity site for Ca²⁺ appears as the least sensitive to NaCl washing.

If the 24 kDa protein was incubated for more than half an hour with the NaCl-washed particles (with 40% residual activity in this given experiment) in the dark, at a chlorophyll concentration of 1 mg/ml, on ice as in Ref. 14, in a sucrose-free medium and with 10 µM EGTA present, we then observed (curve ● in Fig. 2) a stimulation of oxygen evolution, without Ca²⁺ from 40% to 60% of the total restorable activity. It was weaker than that observed in Ref. 14. The reactivation of the remaining fraction of PS-II centers with Ca²⁺ showed that an appreciable fraction of the low-af-

finity site was still present after reactivation.

If 20 µM Ca²⁺ was present during the long dark incubation, the same curve as curve ● in Fig. 2 was obtained (not shown).

Discussion

Our results show that after NaCl washing, PS-II particles possess a residual oxygen evolution with characteristics identical to the oxygen evolution of intact PS-II particles for centers which can still function.

With NaCl-treated PS-II particles which possessed only 10% of residual activity, two ranges of reactivation by Ca^{2+} occur. For $Ca^{2+}=0.4$ mM or $Ca^{2+}=10$ mM we obtained the same half-activity with respect to the light intensity (Fig. 3). This result suggests that 70% of the PS-II centers have a high-affinity site for Ca^{2+} and 30% a low-affinity site for Ca^{2+} . Contrary to Refs. 13 and 18 the high affinity site exists even in the absence of the 24 kDa protein . The 24 kDa protein affected the reactivation by Ca^{2+} in two ways depending on the conditions of incubation. Shortly after its addition to NaCl-washed PS-II particles, it only stabilized oxygen evolution.

When the 24 kDa protein is present a long time before illumination, the centers that possess a high affinity site for Ca²⁺ even without this protein apparently do not need Ca²⁺ for oxygen evolution, but we cannot exclude a slow equilibrium between traces of Ca²⁺ in the medium and its site on the membrane surface.

After washing of the particles with either 1 or 2 M NaCl the residual activity varied from 10 to 40%. The reactivation of the inhibited PS-II centers by Ca²⁺ allowed us to conclude that those centers having a high affinity site for Ca²⁺, even in the absence of the 24 kDa protein, are more resistant to the salt-treatment than those having a low-affinity site. The reasons for this remain to be elucidated.

Acknowledgements

We thank Drs. N. Murata and M. Miyao for particle preparations. The authors thank Ms. M. Picaud for her expert technical assistance.

References

- 1 Åkerlund, H.E. and Jansson, C. (1981) FEBS Lett. 124, 229-233
- 2 Yamamoto, Y., Doi, M., Tamura, N. and Nishimura, M. (1981) FEBS Lett. 133, 265-268
- 3 Miyao, M. and Murata, N. (1984) Biochim. Biophys. Acta 765, 253-257
- 4 Abramowicz, D.A. and Dismukes, G.C. (1984) Biochim. Biophys. Acta 765,318-328
- 5 Yamamoto, Y., Shinkai, H., Isogai, Y., Matsuura, K. and Nishimura, M. (1984) FEBS Lett. 175, 429-432
- 6 Ono, T. and Inoue, Y. (1984) FEBS Lett. 168, 281-286
- 7 Miyao, M. and Murata, N. (1984) FEBS Lett. 170, 350-354
- 8 Kuwabara, T. and Murata, N. (1983) Plant Cell Physiol. 24, 741-747
- 9 Miyao, M. and Murata, N. (1984) FEBS Lett. 168, 118-120
- 10 Akabori, K., Imaoka, A. and Toyoshima, Y. (1984) FEBS Lett. 173, 36-40
- 11 Andersson, B., Critchley, C., Ryrie, I.J., Jansson, C., Larsson, C. and Anderson, J.M. (1984) FEBS Lett. 168, 113-117
- 12 Larsson, C., Jansson, C., Ljungberg, U., Åkerlund, H.E. and Andersson, B. (1984) in Advances in Photosynthesis Research, (Sybesma. C., ed.), Vol. I, pp. 363-366, Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht, The Netherlands
- 13 Ghanotakis, D.F., Topper, J.N., Babcock, G.T. and Yocum, C.F. (1984) FEBS Lett. 170, 169-173
- 14 Miyao, M. Murata, N. (1983) Biochim. Biophys. Acta 725, 87-93
- 15 Åkerlund, H.E., Renger, G., Weiss, W. and Hagemann, R. (1984) Biochim. Biophys. Acta 765, 1-6
- 16 Wensink, J., Dekker, J.P. and Van Gorkom, H.J. (1984) Biochim. Biophys. Acta 765, 147-155
- 17 Berthold, D.A., Babcock, G.T. and Yocum, C.F. (1981) FEBS Lett. 134, 231-234
- 18 Boussac, A. and Etienne, A.L. (1984) C.R. Acad. Sci. (Paris) 299, 625–627
- 19 Lemasson, C. and Etienne, A.L. (1975) Biochim. Biophys. Acta 408, 135-142
- 20 Kuwabara, T. and Murata, N. (1982) Plant Cell Physiol. 23, 533-539
- 21 Lavorel, J. (1976) J. Theor. Biol. 57, 171-185
- 22 Bouges-Bocquet, B. (1980) Biochim. Biophys. Acta 594, 85-103
- 23 Boussac, A., Maison-Peteri, B., Vernotte, C. and Etienne, A.L. (1985) Biochim. Biophys Acta 808, 225-230
- 24 Imaoka, A., Yanagi, M., Akabori, K. and Toyoshima, Y. (1984) FEBS Lett. 176, 341-345
- 25 Dekker, J.P., Ghanotakis, D.F., Plijter, J.J., Van Gorkom, H.J. and Babcock, G.T. (1984) Biochim. Biophys. Acta 767, 515-523